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Abstract. The two-dimensional symmetric connections whose geodesic equations are derivable
from a Lagrangian function are divided into five classes. This classification is compared with
that of Douglas for more general classes of systems of ordinary differential equations. Three of
the five classes of connections are further investigated and in most cases specific Lagrangians
are exhibited. In particular those connections that are engendered by Lagrangians homogeneous
in velocities are characterized in terms of the Ricci tensor of each connection. Finally several
examples of variational connections that possess integrals of motion are given, thereby extending
the known class of completely integrable systems.

1. Introduction

The inverse problem of the calculus of variations is concerned with finding necessary and
sufficient conditions for a given system of second-order ordinary differential equations to be
derivable from a regular Lagrangian function. In [3] Douglas gave an exhaustive treatment
of the two degrees of freedom case. In [1] various aspects of the inverse problem were
considered. In particular, section 7 of [1] was concerned with finding Lagrangians for the
geodesic system associated to a symmetric linear connection in two dimensions. This paper
extends these investigations to the point where most connections for which at least one
explicit Lagrangian exists are written down.

We have attempted to make this paper as self-contained as possible. In particular we
do not discuss the Helmholtz conditions which provide necessary and sufficient conditions
for the existence of Lagrangians. Besides [1, 3] the Helmholtz conditions are well studied
in [2, 5], for example.

In section 2 we obtain a basic classification for variational connections. Again the
discussion is brief and the reader will have to consult [1] for the full story. Of the five
types of connection considered we ignore flat connections (type (V)) and another class
(type (III)) with regard to the problem of exhibiting explicit Lagrangians. Even the existence
of type (III) connections is at this point in doubt let alone the existence of Lagrangians for
such connections.

The remaining three types of connections are those for which either the Ricci tensor
Kij is degenerate, or if non-degenerate there exists a Lagrangian which is a homogeneous
function of the velocitiesu andv. Recall that in two dimensions the Ricci tensor embodies
the entire curvature tensor. See [4] for more details. We usex and y for the position
variables so thatu andv rather thanẋ and ẏ are the derivatives ofx andy, with respect to
the independent variablet .
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Section 3 explains how the classification of section 2 is related to the well known
classification of Douglas [3]. Sections 4–6 are each devoted to one of the classes of
connections given in section 2. Explicit Lagrangians are exhibited in most cases.

Note that any Lagrangian function which is homogeneous of degreek in u and v,
provided it is regular, gives Euler–Lagrange equations with right-hand sides that are
homogeneous of degree 2 inu and v, but not necessarily homogeneous quadratic. As
a result of sections 4 and 6 we obtain a characterization of those homogeneous Lagrangians
that give rise to geodesic sprays. Furthermore the connections themselves are characterized
by simple properties of the Ricci tensor.

2. The inverse problem for connections

We consider a symmetric connection in two dimensions whose geodesic equations we write
as

u̇i + 0ijhujuh = 0 (2.1)

where0ijh are functions of the coordinates(xi) andui denotes the time derivative ofxi .
The inverse problem for (2.1) is concerned with finding a functionL(t, xi, ui) so that (2.1)
are the Euler–Lagrange equations ofL.

In [1] the inverse problem for connections and much more general systems was
considered. We shall present sufficient information of that theory so that the reader has
a relatively complete understanding of the inverse problem as it relates to (2.1).

In [1] it was shown that the following condition is necessary for the existence of a
Lagrangian that engenders (2.1) whereKij denotes the Ricci tensor of the0ijh:

K(kîKhĵ ;l) = K(kĵKhî;l). (2.2)

A very similar condition, namely,

K(kîKhj);l = K(hjKk)i;l (2.3)

was also shown to be of significance. In fact in full (2.3) comprises six conditions whereas
(2.2) comprises four conditions and (2.3) implies (2.2).

We can now give a classification of variational connections into types that we number
(I)–(V).

(I) Kij degenerate and (2.3) satisfied;
(II) Kij non-degenerate and (2.3) satisfied;
(III) Kij non-degenerate and (2.2) but not (2.3) satisfied;
(IV) Kij skew-symmetric but not zero;
(V) Kij zero.
From the theory developed in [1] it is known that every variational connection belongs

to one of the five types. Clearly for type (V) the associated connection is flat and hence
variational as too are the connections of types (I)–(IV). For type (III) it is not known whether
such connections actually exist. (For more details we refer to [1 p 95] and the numbering
(I), (II) and (III) is chosen to agree with that reference. The existence problem for type (III)
connections leads to a delicate problem in differential systems theory which we hope to
revisit in the future. However, even if this problem can be answered affirmatively, it seems
doubtful whether concrete examples of this type can be written down.) The remainder of
this paper will not be concerned with the connections of types (III) or (V).
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3. Relation to the classification of Douglas

As an alternative to the theory of [1] we summarize the situation for connections in terms
of Douglas’ classification [3]. It must be emphasized that Douglas also used capital Roman
numerals (I)–(IV) in his classification but that it is different to the one used here in section 2
which refers to connections only. First of all a connection belongs to case (I) of Douglas
if and only if it is flat. Secondly, case (IV) of Douglas can never happen (the fundamental
3× 3 matrix is always singular) and in Douglas’ case (III) only (IIIb) can occur in which
case a Lagrangian is necessarily singular. Finally equation (2.2) above is precisely the
condition for a connection to belong to case (II) of Douglas.

As regards type (II) of section 2 above the system (2.1) falls precisely into cases (II) a1,
(II) a2 and (II)b of Douglas according as the Ricci tensor is degenerate, non-degenerate but
not skew-symmetric, or skew-symmetric, respectively. In the remainder of this paper we
shall have no need to refer to Douglas’ classification and the Roman numerals used below
will always pertain to section 2 above.

4. Connections with Ricci skew-symmetric

In [1] it was shown that for type (IV) connections coordinates could be introduced relative
to which the geodesic equations are

u̇ = −ϕxu2 v̇ = ϕyv2 (4.1)

for some functionϕ of x andy and for whichϕxy is non-zero, at least on an open subset
of the ambient manifold. Moreover equations (4.1) are engendered by the Lagrangian

L = eϕ
u

v
. (4.2)

Indeed the second Helmholtz condition, which expresses the self-adjointness of the
Jacobi endomorphism to the multiplier matrix, see [1, 2, 5], reduces sinceKij is skew to

u2Luu + 2uvLuv + v2Lvv = 0. (4.3)

From (4.3) it follows thatL may be written in the form

L = u+ λv (4.4)

whereµ andλ are functions ofx, y andz, respectively, andz is defined to beu/v. If one
now computes the Euler–Lagrange equations of (4.4) one finds that they are given by (4.1)
if and only if

µx − zµzϕx = 0 (4.5)

µy − zµzϕy = 0 (4.6)

(z2ϕx + zϕy)λzz + λx − zλzx − λzy = 0. (4.7)

From (4.5) and (4.6) one may deduce that

ϕxµy − ϕyµx = 0. (4.8)

But now (4.5), (4.6) and (4.8) simply imply thatµ is a smooth function of the Lagrangian
given by (4.2). Any such Lagrangian is necessarily regular unless it is constant. The most
general Lagrangian for (4.1) is thus obtained by adding to a function ofL given by (4.2)
any solution of (4.7).

At this point and for the only time in this paper we consider some questions of a
global nature. Note that (4.2) may be defined on the complement of the zero section in the
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tangent bundle TM of the two-dimensional manifold that supports the connection given by
(4.1). AlternativelyL may be considered as being defined on PTM, the bundle obtained by
projectivizing the fibres of TM. However, it turns out that the induced connection on PTM
is flat.

The Lagrangian (4.2) also shows how to define a connection with skew Ricci on the
torus. If we takeϕ to be periodic inx andy, for example,

ϕ = sinx siny (4.9)

then the corresponding connection passes to the torus. In this case the Ricci tensor, although
it is skew-symmetric, does have some singularities.

5. Connections of type (I)

Turning next to connections of type (I) we shall obtain a different characterization of them
for which we shall have to make a new definition. For connections that are not of type (IV)
and (V) we define a one-formλ by

Nλ = Kijuiσ j (5.1)

where

σ j = duj + 0jikui dxk (5.2)

and

N = Kijuiuj . (5.3)

It may be shown that

N2 dλ = (KrsKti;j −KriKst;j )urusut dxj ∧ σ i. (5.4)

Hence (2.3) is the condition forλ to be closed.

Theorem 5.1.A non-flat connection∇ is of type (I) if and only if it has a parallel one-form.

Proof. If ∇ admits a parallel one-form, its geodesic equations may be written

u̇ = −(au2+ 2buv + cv2) v̇ = 0 (5.5)

the one-form being dy. An easy calculation shows that the first column of Ricci is zero.
Furthermoreλ may be shown to bedv

v
henceλ is closed and (2.3) is satisfied.

Conversely, ifK is degenerate we may introduce coordinates so that eitherK11 and
K21 are zero orK11 andK12 are zero. In fact the second case cannot happen as follows
from proposition 7.8 in [1]. In the first case if we let the geodesics of the connection be
given by

u̇ = −(au2+ 2buv + cv2) v̇ = −(γ u2+ 2βuv + αv2) (5.6)

one finds

λ = d(ln v)+ z(λ dx + β dy)+ β dx + α dy (5.7)

wherez is again u
v
.

From (5.7) we conclude that

dλ = dz ∧ (γ dx + β dy)+ z(βx − γy) dx ∧ dy + (αx − βy) dx ∧ dy (5.8)
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and henceλ is closed if and only ifβ and γ both vanish andα is independent ofx.
However, then a transformation of the form

x̄ = x̄(x, y) ȳ = ȳ(y) (5.9)

can be used to eliminateα and reduce (5.6) to (5.5). �

Note that if the connection is of the form given by (5.5) a further coordinate
transformation can be made so as to eliminatea, b or c. Let us assume then thatc is
also zero in (5.5). In this case the self-adjointness Helmholtz condition becomes

uLuu + vLuv = 0. (5.10)

From (5.10) we conclude that there exist smooth functionsθ andψ such that

L = vθ(x, y, z)+ ψ(x, y, v). (5.11)

Now using the fact thatuLu + vLv − L is a first integral of the geodesics, by modifying
θ if necessary, we may assume thatψ depends onv only. In order forL to be a regular
Lagrangian it is necessary forψ to be a nonlinear function ofv. In case it is nonlinear,
a straightforward calculation shows that (5.11) gives rise to the geodesic equations (5.5) if
and only if θ satisfies

(zx2+ 2bz+ c)θzz + θx − zθzx − θyz = 0. (5.12)

The most general LagrangianL is then obtained by solving (5.12) and choosingψ to be a
nonlinear function ofv.

A special case of type (I) connections is worth noting, namely, those for which the Ricci
tensor is degenerate and symmetric. Indeed with reference to (5.5) one finds that Ricci is
symmetric if and only if

ay − bx = 0. (5.13)

From (5.13) it follows that there exists a functionϕ(x, y) such that

a = ϕx b = ϕy. (5.14)

We summarize the situation by means of the following theorem.

Theorem 5.2.A connection of type (I) for which the Ricci tensor is symmetric has geodesic
equations given by

u̇ = −ϕxu2− 2ϕyuv v̇ = 0. (5.15)

Furthermore these geodesics are derived from the Lagrangian

L = e2ϕ(x,y) u
2

v
+ ψ(v) (5.16)

whereψvv is non-zero.

Proof. As we have stated, we may transform away the coefficientc in (5.5) by a coordinate
transformation. Equation (5.15) now follows from (5.14). Finally note in this caseθ = e2ϕz2

gives a solution to (5.12). �



4996 G Thompson

6. Connections of type (II) and homogeneous Lagrangians

It remains to consider type (II) Lagrangians. We introduce the differential operator1 by

1 = u ∂
∂v
+ v ∂

∂v
. (6.1)

A Lagrangian function will then be homogeneous of degreek (in velocities) provided

1L = kL. (6.2)

Note that in order forL to be regular it is necessary thatk 6= 1 and that ifL is independent
of time t it is a first integral of its own Euler–Lagrange equations.

Suppose now that the Euler–Lagrange equations ofL are the geodesics of a symmetric
linear connection1. The self-adjointness Helmholtz condition gives

(K12u+K22v)1(Lu) = (K11u+K12v)1(Lv). (6.3)

From the definition of the one-formλ given by (5.1) we find that

λ =
(
1
(
∂L
∂ui

))
σ i

1(1− 1)L
. (6.4)

In the special case whereL satisfies (6.2) withk different from zero or unity it follows that

λ = d(lnL)

k
. (6.5)

It was shown in [1, proposition 7.8] that wheneverλ is closed the local functionL of
which it is the differential is a Lagrangian for the given geodesic system. Furthermore this
Lagrangian is regular provided that Ricci is regular (and not skew-symmetric). In fact the
Hessian ofL is given up to a factor ofKN−4 by

(K11)
2u4+ 2K11K12u

3v + ((K12+K21)
2+ 2K11K22)u

2v2+ 2K22K21uv
3+ (K22)

2v4

whereK is the determinant ofKij .
Our next objective is to show that a connection is of type (II) only if its geodesic

equations are derivable from a Lagrangian which is homogeneous of degreek wherek is
not zero. We assume that our LagrangianL may be written as

L = vpM(x, y, z) (6.6)

wherez stands foru/v andM is a smooth function of its three arguments. Herep is a real
number so (6.6) expresses the fact thatL is homogeneous of degreep. We next compute
the Euler–Lagrange equations for the Lagrangian given by (6.6) and demand that they are
the geodesic equations of a spray so that the right-hand sides are quadratic inu andv. By
factoring outv2 we have two expressionsQ andR which are quadratic inz. One finds that
M must satisfy the following equations in order that (6.6) should give rise to a spray:

(zMzx +Myz −Mx)Mz − (zMx +My)Mzz

pMMzz − (p − 1)M2
z

= R (6.7)

pM(Mx −Mzy − zMzx)+ (p − 1)Mz(zMx +My)

pMMzz − (p − 1)M2
z

= Q− zR. (6.8)

These last two equations may be rearranged so as to give

zMx +My = R(zMz − pM)−QMz (6.9)

zMzx +Myz −Mx = R(zMzz − (p − 1)Mz)−QMzz. (6.10)
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Differentiating (6.9) with respect toz gives

zMzx +Myz +Mx = Rz(zMz − pM)+ R(zMzz − (p − 1)Mz)−QMzz −QzMz. (6.11)

From (6.9)–(6.11) we obtain

Mx = 1
2Rz(zMz − pM)− 1

2QzMz (6.12)

My = 1
2(zMz − pM)(2R − zRz)+ 1

2Mz(zQz − 2Q). (6.13)

From (6.12) we computeMxy andMyx from (6.13) and equate these two. After some
elimination and using (6.9) and (6.11) we obtain the following condition:

2(zRzx + Rzy − 2Rx)(zMz − pM)− 2(Qzy + zQzx − 2Qx)Mz

+((zRz −Qz)Rz + 2(Q− zR)Rzz)(zMz − pM)
−(2RQz − 2RzQ+ 2(Q− zR)Qzz −Qz(Qz − zRz))Mz = 0. (6.14)

It turns out that equation (6.14) may be expressed in terms of the componentsKij of the
Ricci tensor corresponding to the connection components contained inQ andR. Indeed
one finds that

(K11z
2+ (K12+K21)z+K22)Mz = p(K11z+K21)M. (6.15)

Equation (6.15) is an ordinary differential equation forM in the variablez. There are
essentially three cases to consider depending on whether the coefficient ofMz in the left-
hand side of (6.15) (i) factors into distinct linear factors, (ii) repeated linear factors or (iii)
is an irreducible quadratic. Geometrically, these cases are distinguished by the signature of
the symmetric part ofKij . In case (i)K(ij) is non-singular and indefinite, in case (ii)K(ij)
is singular and finally in case (iii)K(ij) is definite. Before investigating these cases further
we prove two lemmas.

Lemma 6.1.The LagrangianL given by (6.6) is degenerate if and only ifL is a power of a
function which is homogeneously linear inu andv. In particular a Lagrangian homogeneous
of degree 0 is always regular, provided it depends onz.

Proof. As we see in (6.7) and (6.8),L is degenerate if and only ifM satisfies

pMMzz − (p − 1)M2
z = 0. (6.16)

Note that ifp is zero (6.16) is satisfied if and only ifMz is zero. Equation (6.16) is easily
integrated giving

Mvp = (a(x, y)u+ b((x, y)v)p
for some smooth functionsa andb of x andy. The converse is well known. �

Lemma 6.2.The function(au+ bv)p(cu+ dv)q wherea, b, c, d, p, q are functions ofx, y
such thatad − bc is non-zero is locally equivalent toF(x̄, ȳ)ūpv̄q where(x, y)→ (x̄, ȳ)

is a non-singular change of variables and(ū, v̄) changes from(u, v) by the Jacobian of
(x, y)→ (x̄, ȳ).

Proof. Consider the following algebro-differential system for(x, y, F ):

bx̄x − ax̄y = 0

dȳx − cȳy = 0

apcq = F x̄px ȳqx .
(6.17)
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The first two equations in (6.17) may be solved forx and y and then the third used
to determineF . Provided that(x, y) → (x̄, ȳ) is non-singular, this gives the required
transformation.

If x andy are functionally dependent we have

bc(x̄x ȳy − x̄y ȳx) = (ad − bc)x̄x ȳy = 0. (6.18)

Since ad − bc is non-zero we may assume without loss of generality thatx̄y is zero.
Returning to the first equation in (6.17) we deduce that eitherx is constant orb is zero.
However, we can always choosex so as not to be constant and ifb is zero we may set
x̄ = x. Sincex andy are functionally dependent we must haveȳy = 0 and hence from the
second equation in (6.17) we must haved = 0. However, ifb andd are both zero there is
nothing to prove.

Let us now reconsider case (i) of (6.15). An elementary integration shows thatMvp is
of the form(au+ bv)p(cu+ dv)q wherea, b, c, d, q are functions ofx andy andad − bc
is non-zero. Hence lemma 6.2 may be applied. A similar analysis in each of cases (ii) and
(iii) may be made using a variation of lemma 6.2.

There is one further refinement concerning the form of the Lagrangian that can be made.
In case of (i) of (6.15) we now know that the Lagrangian may be written in the form eburvs

wherer + s = p. We shall show that in fact bothr ands have to be constant. Indeed the
Euler–Lagrange equations for eburvs turn out to be:

r(1− r − s)u̇ = [(r + s − 1)(bx + rx ln u+ sx ln v)+ rsx ]u2− (s − 1)ryuv

s(1− r − s)v̇ = [(r + s − 1)(by + ry ln u+ sy ln v)+ sry ]v2− (r − 1)sxuv
(6.19)

and sincer + s is constant it easily follows that we can only haverx, ry, sx and sy all
zero in order for (6.19) to represent the geodesic equations of a spray. Hencer and s are
both constants. Similar arguments may be made in the case (ii) and (iii) of (61.5) and we
summarize the various possibilities as follows. �

Theorem 6.3.A geodesic spray with non-zero curvature arises from an homogeneous
Lagrangian if and only if the associated connection is of type (II) or type (IV). For
type (II) connections there are three cases respectively as the symmetric part of Ricci is
non-degenerate and indefinite, degenerate (but not zero), or (positive or negative) definite;
in each of these respective cases there is a canonical Lagrangian and hence canonical form
of the geodesic equations of the following type:

L = eburvs u̇ = −bx
r
u2

(b = b(x, y)) r, s ∈ (R) v̇ = −by
s
v2

 (6.20)

L = evv2e
u
v u̇ = −2bxuv − (by − 2bx)v

2

(b = b(x, y)) v̇ = −bxv2

}
(6.21)

L = (u2+ v2)eb+c arctan( u
v
) u̇ = 1

4+ c2
[(byc − 2bx)(u

2− v2)− 2(bxc + 2by)uv]

(c ∈ R, b = b(x, y)) v̇ = 1

4+ c2
[(bxc + 2by)(u

2− v2)+ 2(byc − 2bx)uv].


(6.22)
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7. Completely integrable connections

In this section we give several examples of variational connections that possess explicit
integrals of motion and therefore constitute new non-standard examples of completely
integrable systems when they are transformed into the Hamiltonian picture.

In particular, it should be noted that Killing’s equations for homogeneous integrals of
motion makes sense for the geodesics of a connection irrespective of whether the connection
is engendered by a pseudo-Riemannian metric.

Example 7.1.In the Lagrangian (5.16) we set

ψ(v) = 1
2v

2. (7.1)

There is a qualitative difference between those systems for whichϕyy + ϕ2
y is or is not

independent ofx. Invariantly this difference corresponds to the tensorBijk(= Kij ;k−Kkj ;i )
being zero or not. In the latter casev is the unique linear integral up to scaling by a constant.

In the former case there are linearly independent integrals. To exhibit these integrals
we rewrite the geodesics in the following form whereA is a function ofy andB andC
are functions ofx:

u̇ = −AB
′′ + C ′′

AB ′ + C ′ u
2−

(
2A′B ′

AB ′ + C −
A′′

A′

)
uv v̇ = 0. (7.2)

The integrals of motion arev, (AB
′+C ′)
A′ u+ Bv and A(AB ′+C ′)

A′ u− Cv.

Example 7.2.Consider the Lagrangian given by (i) of theorem 6.3. There is a qualitative
difference between the cases wherer and s are or are not equal. In the former case Ricci
is symmetric so we are essentially in the Lorentz metric Lagrangian situation. In the latter
case Ricci is not symmetric and from the Killing theory we conclude that there are at most
two linearly independent degreey integrals of motion. A more detailed study reveals that
there is at most one, although the argument is rather involved.

A fairly general class of such systems having one integral can be described as follows.
Suppose thatb satisfies

re
b
s bx + seb

r by = 0. (7.3)

Then e
b
r u+ e

b
3 v is an integral. Equation (7.3) may be solved by defining

lnw = b

r
− b
s

(7.4)

from which (7.3) implies that

rwx + swwy = 0. (7.5)

The solution of (7.5) is given implicitly by

sxw − ry = F(w) (7.6)

whereF is an arbitrary function ofw.

Example 7.3.Consider the Lagrangian given by (ii) of theorem 6.3 but suppose now thatb

is independent ofy. Then one may check that2
v
− u

vz
is a first integral of the geodesics.

More generally examples of integrable systems may be obtained from Neother’s theorem
by assuming some invariance of the Lagrangian. For example for the Lagrangian eburvs

we could chooseb to be a function ofpx + qy wherep andq are real. In this caseq
u
− p

v

is a first integral.
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